RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2019, том 25, номер 4, страницы 15–30 (Mi timm1666)

Линейное восстановление псевдодифференциальных операторов на классах гладких функций на m-мерном торе. II

Д. Б. Базарханов

Институт математики и математического моделирования Министерства образования и науки Республики Казахстан

Аннотация: В предлагаемой работе формулируется и обсуждается задача оптимального восстановления значений псевдодифференциальных операторов $T_a$ на $m$-мерном торе $\mathbb{T}^m$ с символами $a$ из классов $\widetilde{\Psi}_{\epsilon\,\theta}^{\tau\mathtt{m}}[\upsilon;$K,L$]$, на распределениях $f$ из классов $\mathrm{B}^{s\,\mathtt{m}}_{p\,q}(\mathbb{T}^m)$ типа Никольского - Бесова и $\mathrm{L}^{s\,\mathtt{m}}_{p\,q}(\mathbb{T}^m)$ типа Лизоркина - Трибеля по конечной спектральной информации о символе оператора и о распределении (конечные наборы коэффициентов Фурье символа оператора и распределения). Доказывается, что оптимальным (или, по крайней мере, линейным оптимальным) по порядку методом восстановления в этой задаче для ряда соотношений между параметрами класса символов, класса распределений и объемлющего пространства является метод $\Upsilon_{\Lambda(\gamma, N)}$, построенный и изученный в части I данной работы автора (2018); при этом величина (линейного) оптимального восстановления имеет точный порядок соответствующего поперечника Фурье классов $\mathrm{B}^{s - \tau \,\mathtt{m}}_{p\,q}(\mathbb{T}^m)$ и $\mathrm{L}^{s - \tau \,\mathtt{m}}_{p\,q}(\mathbb{T}^m)$ соответственно (теорема 1). Попутно утверждение теоремы 1 части I  доказывается при "естественных"  условиях на дифференциальные параметры $\tau$ классов символов $\widetilde{\Psi}_{\epsilon\,\theta}^{\tau\mathtt{m}}[\upsilon;$K,L$]$ и $s$ пространств $B^{s\,\mathtt{m}}_{p\,q}(\mathbb{T}^m)$ типа Никольского - Бесова и $L^{s\,\mathtt{m}}_{p\,q}(\mathbb{T}^m)$ типа Лизоркина - Трибеля; кроме того, устанавливается, что оценки сверху из теоремы 1 на самом деле являются точными в смысле порядка (см. теорему 3).

Ключевые слова: псевдодифференциальный оператор на m-мерном торе, класс символов (типа произведения), пространство распределений типа Никольского - Бесова / Лизоркина - Трибеля, оптимальное восстановление класса операторов, оценки погрешности оптимального восстановления, поперечник Фурье.

УДК: 517.95

MSC: 41A45, 42B05, 35S05, 58J40

Поступила в редакцию: 09.08.2019
Исправленный вариант: 18.11.2019
Принята в печать: 25.11.2019

DOI: 10.21538/0134-4889-2019-25-4-15-30



Реферативные базы данных:


© МИАН, 2024