RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2019, том 25, номер 4, страницы 88–98 (Mi timm1673)

Эта публикация цитируется в 1 статье

О примитивных группах подстановок со стабилизатором двух точек, нормальным в стабилизаторе одной из них: случай, когда цоколь есть степень группы $E_8(q)$

А. В. Коныгин

Институт математики и механики им. Н. Н. Красовского Уральского отделения РАН, г. Екатеринбург

Аннотация: Пусть $G$ - примитивная группа подстановок на конечном множестве $X$$x \in X$, $y \in X \setminus \{x\}$ и $G_{x, y}~\trianglelefteq~G_x$. П. Камероном был поставлен вопрос о справедливости в этом случае равенства $G_{x, y} = 1$. Ранее автором было доказано, что если цоколь группы $G$ не является степенью группы, изоморфной $E_8(q)$$q$ - степень простого числа, то $G_{x, y} = 1$. В настоящей работе рассматривается случай, когда цоколь группы $G$ является степенью группы, изоморфной $E_8(q)$. Вместе с предыдущим результатом мы получаем два следующих утверждения: 1. Пусть $G$ - почти простая примитивная группа подстановок на конечном множестве $X$. Предположим, что в случае, если цоколь $G$ изоморфен $E_8(q)$, то $G_x$ для $x \in X$ не является подгруппой Боровика в группе $G$. Тогда для таких примитивных групп подстановок $G$ ответ на вопрос П. Камерона положителен. 2.  Пусть $G$ - примитивная группа подстановок на конечном множестве $X$ со свойством  $G \leq H \mathrm{ wr } S_m$. Предположим, что в случае, если цоколь группы $H$ изоморфен $E_8(q)$, то стабилизатор точки в группе $H$ не является подгруппой Боровика в группе $H$. Тогда для таких примитивных групп подстановок $G$ ответ на вопрос П. Камерона также положителен.

Ключевые слова: примитивная группа подстановок, регулярная подорбита.

УДК: 512.542

MSC: 20B15, 20D06

Поступила в редакцию: 19.09.2019
Исправленный вариант: 18.11.2019
Принята в печать: 25.11.2019

DOI: 10.21538/0134-4889-2019-25-4-88-98



Реферативные базы данных:


© МИАН, 2024