RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2020, том 26, номер 1, страницы 12–26 (Mi timm1696)

Оценивание состояний стохастических многошаговых включений

Б. И. Ананьев

Институт математики и механики им. Н. Н. Красовского Уральского отделения РАН, г. Екатеринбург

Аннотация: Рассмотрены многошаговые стохастические включения вида $z_k\in H_k(z_{k-1},\omega)$, где $z_k\in Z_k=X_kY_k$, $k\in1:N$. Проекция $z_k$ на $X_k$ считается ненаблюдаемым, а проекция на $Y_k$ - наблюдаемым состоянием. Элемент $\omega$ принадлежит вероятностному пространству $(\Omega,\mathcal {F},P)$, а мультиотображение $H_k(z,\cdot)$ является измеримым относительно $\sigma$-алгебры $\mathcal {G}_k$. Последние $\sigma$-алгебры полагаются независимыми при разных $k$, а их объединение $\mathcal {F}_k=\sigma\big(\bigcup_{i\in1:k}\mathcal {G}_i\big)\subset\mathcal {F}$ характеризует возрастающее накопление информации. Исследуются три способа оценивания ненаблюдаемых состояний, которые основаны на разных подходах к формированию множества переходных вероятностей. Показано, что эти способы приводят к различным множествам условных распределений для ненаблюдаемых состояний процесса. Частично изучен вопрос о достаточных условиях совпадения рассмотренных схем фильтрации и доказано, что для конечных фазовых пространств эти схемы совпадают в случае неатомического вероятностного пространства. Введен новый класс лебеговских селекторов для произвольных мультиотображений и установлено, что он не пуст, в частности, для измеримых простых прямоугольников на неатомическом пространстве. Доказано, что в лебеговском классе для простых включений и селекторов, заданных на неатомическом вероятностном пространстве, схемы фильтрации также совпадают.

Ключевые слова: оценивание, фильтрация, стохастические включения, селекторы, переходные вероятности, условные распределения.

УДК: 519.216.3

MSC: 93E10, 62L12, 34G25

Поступила в редакцию: 13.11.2019
Исправленный вариант: 22.01.2020
Принята в печать: 27.01.2020

DOI: 10.21538/0134-4889-2020-26-1-12-26



Реферативные базы данных:


© МИАН, 2024