RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2020, том 26, номер 2, страницы 147–160 (Mi timm1729)

О конечных простых группах исключительного лиева типа над полями разных характеристик, графы простых чисел которых совпадают

М. Р. Зиновьеваab

a Институт математики и механики им. Н. Н. Красовского Уральского отделения РАН, г. Екатеринбург
b Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, г. Екатеринбург

Аннотация: Пусть $G$ — конечная группа, $\pi(G)$ — множество простых делителей ее порядка, $\omega(G)$ — множество порядков ее элементов. На $\pi(G)$ определяется граф со следующим отношением смежности: различные вершины $r$ и $s$ из $\pi(G)$ смежны тогда и только тогда, когда $rs\in \omega(G)$. Этот граф называется графом Грюнберга — Кегеля или графом простых чисел группы $G$ и обозначается через $GK(G)$. В “Коуровской тетради” А. В. Васильев поставил вопрос 16.26 об описании всех пар неизоморфных конечных простых неабелевых групп с одинаковым графом Грюнберга — Кегеля. М. Хаги и М. А. Звездина получили такое описание в случае, когда одна из этих групп является спорадической и знакопеременной группой соответственно. Автор решил этот вопрос для конечных простых групп лиева типа над полями одной характеристики. В данной работе доказана следующая теорема.
Теорема. Пусть $G$ — конечная простая группа исключительного лиева типа над полем из $q$ элементов и $G_1$ — неизоморфная группе $G$ конечная простая группа лиева типа над полем из $q_1$ элементов, где $q$ и $q_1$ взаимно просты. Если $GK(G)=GK(G_1)$, то выполнено одно из следующих утверждений:
$(1)$ $\{G,G_1\}=\{G_2(3),A_1(13)\}$;
$(2)$ $\{G,G_1\}=\{{^2}F_4(2)',A_3(3)\}$;
$(3)$ $\{G,G_1\}=\{{^3}D_4(q),A_2(q_1)\}$, где $(q_1-1)_3\neq 3$, $q_1+1\neq 2^{k_1}$;
$(4)$ $\{G,G_1\}=\{{^3}D_4(q),A_4^{\pm}(q_1)\}$, где $(q_1\mp1)_5\neq 5$;
$(5)$ $\{G,G_1\}=\{G_2(q),G_2(q_1)\}$, где $q$ и $q_1$ не являются степенями числа 3;
$(6)$ $\{G,G_1\}$ — одна из пар $\{F_4(q),F_4(q_1)\}$, $\{{^3}D_4(q),{^3}D_4(q_1)\}$, $\{E_8(q),E_8(q_1)\}$.
Существование пар групп в пп. (3)–(6) неизвестно.

Ключевые слова: конечная простая группа исключительного лиева типа, спектр, граф простых чисел.

УДК: 512.542

MSC: 05C25,20D05,20D06

Поступила в редакцию: 03.04.2020
Исправленный вариант: 11.05.2020
Принята в печать: 25.05.2020

DOI: 10.21538/0134-4889-2020-26-2-147-160


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, 313, suppl. 1, S228–S240

Реферативные базы данных:


© МИАН, 2024