RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2020, том 26, номер 3, страницы 249–257 (Mi timm1760)

Эта публикация цитируется в 1 статье

Дискретные ортогональные преобразования на мультимножествах, ассоциированных с полными последовательностями

В. М. Черновab, М. А. Чичеваab

a Институт систем обработки изображений РАН - филиал ФНИЦ "Кристаллография и фотоника" РАН, Самара, Россия, г. Самара
b Самарский национальный исследовательский университет имени академика С. П. Королева

Аннотация: В работе рассматривается специфическая версия авторского подхода к синтезу базисов дискретных ортогональных преобразований (ДОП), учитывающего связь структуры базисных функций преобразования и существованием той или иной системы счисления на (многомерном) множестве индексов входного сигнала. В отличие от случая прототипной работы В. М. Чернова “Дискретные ортогональные преобразования с базисами, порожденными самоподобными последовательностями” (2018), в которой рассматривались ДО, ассоциированные с безизбыточными системами счисления (т. е. с такими системами счисления, в которых каждый индекс входного сигнала имел бы единственное представление в избранной системе счисления), в данной работе рассматривается случай так называемых полных систем счисления. Для них уже нет биективного соответствия между множеством входных индексов ДОП и множеством их цифровых представлений. Потенциально такие постановки прикладных задач естественно возникают в распознавании изображений, искусственном интеллекте, теории формальных языков, математическом программировании и в других областях, где анализируемые объекты характеризуются многими разнородными признаками, которые могут быть и количественными, и качественными, и смешанными. При этом сами объекты могут существовать в нескольких экземплярах, имеющих, в частности и противоречивые описания, которые должны рассматриваться и анализироваться как единое целое. Такие многопризнаковые объекты можно представить как мультимножества (“множества с повторениями”). В силу того, что дискретный спектральный анализ является одним из основных инструментов перечисленных задач в классической “множественной” интерпретации объектов исследования, в настоящей работе предпринимается попытка экстраполяции некоторых идей и методов дискретного спектрального анализа на случай анализа мультимножественных объектов.

Ключевые слова: мультимножества, дискретные ортогональные преобразования, полные последовательности.

УДК: 519.688

MSC: 42A38, 42B10

Поступила в редакцию: 14.04.2020
Исправленный вариант: 23.06.2020
Принята в печать: 27.07.2020

DOI: 10.21538/0134-4889-2020-26-3-249-257


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, 313, suppl. 1, S33–S39

Реферативные базы данных:


© МИАН, 2024