RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2020, том 26, номер 4, страницы 126–137 (Mi timm1771)

Эта публикация цитируется в 9 статьях

Границы полиномиальных констант Никольского в $L^p$ с весом Гегенбауэра

Д. В. Горбачевab, И. А. Мартьяновb

a Институт математики и механики им. Н. Н. Красовского Уральского отделения РАН, г. Екатеринбург
b Тульский государственный университет

Аннотация: Мы изучаем границы и асимптотическое поведение при $n\to \infty$ точной константы Никольского в неравенстве $\|u\|_{\infty}\le \mathcal{C}_{\alpha}(n)\|u\|_{p}$ для тригонометрических и алгебраических полиномов степени не больше $n$ в пространстве $L^{p}$ на $(-\pi,\pi]$ с периодическим весом Гегенбауэра $|\!\sin x|^{2\alpha+1}$ и на $[-1,1]$ с алгебраическим весом Гегенбауэра $(1-x^{2})^{\alpha}$ соответственно. Мы доказываем, что при $p\ge 1$ и всех $\alpha\ge -1/2$ имеем $\mathcal{C}_{\alpha}(n)\sim \mathcal{L}_{p}n^{(2\alpha+2)/p}$, где $\mathcal{L}_{p}$ — точная константа Никольского для целых функций экспоненциального типа не больше $1$ в пространстве $L^{p}$ на $\mathbb{R}$ со степенным весом $|x|^{2\alpha+1}$. Более того, мы даем явные границы вида
$$ n^{(2\alpha+2)/p}\mathcal{L}_{p}\le \mathcal{C}_{\alpha}(n)\le (n+2s_{p,\alpha})^{(2\alpha+2)/p}\mathcal{L}_{p},\quad n\ge 0, $$
из которых вытекает данная асимптотика. Эти границы позволяют уточнять известные оценки констант Никольского. Мы рассматриваем такой подход на примере алгебраической константы Никольского при $\alpha=0$. Здесь применяется характеризация экстремальных полиномов из работ Д. Амира и З. Зиглера, В. В. Арестова и М. В. Дейкаловой. Наши утверждения обобщают известные результаты С. Б. Стечкина ($p=1$) и Е. Левина и Д. Любинского ($p>0$) в тригонометрическом случае при $\alpha=-1/2$, и М. И. Ганзбург в алгебраическом случае при $\alpha=0$. Для полуцелых $\alpha=d/2-1$ и $p\ge 1$ наша асимптотика может быть выведена из асимптотики многомерной константы Никольского для сферических полиномов в пространстве $L^{p}$ на сфере $\mathbb{S}^{d}$, доказанной Ф. Даи, Д. Горбачевым и С. Тихоновым. Наше доказательство значительно проще, однако оно не охватывает случай $p<1$.

Ключевые слова: неравенство Никольского, точная константа, асимптотика, тригонометрический полином, алгебраический полином, целая функция экспоненциального типа, вес Гегенбауэра.

УДК: 517.5

MSC: 41A17, 42B10

Поступила в редакцию: 13.09.2020
Исправленный вариант: 02.11.2020
Принята в печать: 09.11.2020

DOI: 10.21538/0134-4889-2020-26-4-126-137


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, 315, suppl. 1, S117–S127

Реферативные базы данных:


© МИАН, 2024