Аннотация:
Для натурального числа $k$ группа $G$ называется вполне $k$-замкнутой, если в каждом из ее точных подстановочных представлений, например, на множестве $\Omega$ группа $G$ является наибольшей подгруппой $\rm {Sym}(\Omega)$, оставляющей на месте как множество каждую $G$-орбиту индуцированного действия на $\Omega\times\dots\times \Omega=\Omega^k$. Доказано, что любая конечная абелева группа $G$ вполне $(n(G) + 1)$-замкнута, но не вполне $n(G)$-замкнута, где $n(G)$ — количество инвариантных множителей в разложении $G$ на инвариантные множители. В частности, доказано, что для каждого натурального числа $k\geq2$ и для каждого простого числа p существует бесконечно много конечных абелевых $p$-групп, которые вполне $k$-замкнуты, но не вполне $(k-1)$-замкнуты. В частном случае $k= 2$ этот результат был получен Абдоллахи и Арезумандом. Поставлено несколько открытых вопросов о вполне $k$-замкнутых группах.
Ключевые слова:группа подстановок; $k$-замыкание; вполне $k$-замкнутая группа.