Аннотация:
В работе рассматриваются вопросы построения алгоритмов решения задачи оптимального управления нелинейной динамической системой при наличии фазовых ограничений. Рассматриваемая система описывает движение управляемого объекта как твердого тела в плотных слоях атмосферы под действием гравитационной и аэродинамической сил. Искомое управление должно доставлять минимальное значение терминальному критерию качества с выполнением ряда ограничений на управление и фазовое состояние динамической системы. Значение оптимизируемого критерия характеризует точность приведения центра масс объекта на заданное множество с требуемой ориентацией его вектора скорости. Управление осуществляется путем изменения пространственной ориентации подвижных управляющих элементов конструкции объекта. Для построения допустимых в исследуемой задаче управлений предлагается итерационная по времени процедура. Эта процедура основана на последовательном использовании момента действующей на управляющие элементы аэродинамической силы, который обеспечивает желательное направление вектора скорости центра масс объекта с учетом всех ограничений. Для определения требуемого момента предлагается использовать соотношение, которое связывает его с моментом аэродинамической силы, действующей на остальную поверхность объекта, при желаемом направлении вектора скорости. Для этого момента вычисляются реализующие его значения управляющих параметров. Работоспособность предлагаемого алгоритма построения допустимых управлений иллюстрируется на модельном примере прикладной задачи оптимального управления. В этой задаче динамическая система описывает движение ступени ракеты-носителя (возвращаемого блока) на атмосферном участке его траектории, на котором осуществляется движение блока в заданный район посадки. Приводятся результаты численного моделирования.