Аннотация:
Рассмотрена задача управления по быстродействию с круговой вектограммой скоростей. Для одного класса невыпуклых плоских целевых множеств, у которых часть границы совпадает с отрезком прямой, выделены условия, позволяющие строить ветви сингулярных (рассеивающих) кривых в аналитической форме. Получены в явном виде формулы для псевдовершин — особых точек границы целевого множества, порождающих ветви сингулярного множества. Выявлена аналитическая связь между концевыми точками различных оптимальных траекторий, имеющих общие начальные условия на сингулярном множестве и попадающих на целевое множество в окрестности псевдовершины. Найдены формулы для крайних точек ветвей сингулярного множества. Развиваемые подходы к точному построению негладких решений динамических задач управления проиллюстрированы на конкретных примерах.