Аннотация:
Статья представляет собой краткий обзор результатов, полученных автором и коллегами и касающихся в основном формул Хопфа — Лакса для уравнений Гамильтона — Якоби и задач с препятствием. К использованию таких формул привело начало применения квазивыпуклых функций (т. е. функций с выпуклыми множествами уровня) для управления в $L^\infty$ и дифференциальных игр, что также рассматривается в обзоре. Посвящается памяти академика А.И. Субботина.