RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2022, том 28, номер 3, страницы 241–258 (Mi timm1940)

Эта публикация цитируется в 5 статьях

Приближенные алгоритмы с постоянной точностью для серии маршрутных комбинаторных задач, основанные на сведении к асимметричной задаче коммивояжера

М. Ю. Хачайa, Е. Д. Незнахинаab, К. В. Рыженкоa

a Институт математики и механики им. Н. Н. Красовского Уральского отделения РАН, г. Екатеринбург
b Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, г. Екатеринбург

Аннотация: В статье впервые обосновываются алгоритмы с постоянными гарантированными оценками точности для серии асимметричных маршрутных задач комбинаторной оптимизации: задачи о штейнеровском цикле (SCP), обобщенной задачи коммивояжера (GTSP), задачи маршрутизации транспорта с неделимым потребительским спросом (CVRP-UCD) и задачи коммивояжера с призами (PCTSP). Объединяет представленные результаты то, что все они опираются на полиномиальную сводимость, сохраняющую стоимость (cost-preserving reduction), исследуемых задач к подходящим постановкам асимметричной задачи коммивояжера (ATSP) и $(22+\varepsilon)$-приближенный алгоритм для этой классической задачи, предложенный О. Свенссоном и В. Трауб в 2019 г.

Ключевые слова: асимметричная задача коммивояжера, алгоритм с постоянной оценкой точности, полиномиальная сводимость, задача о штейнеровском цикле минимального веса, обобщенная задача коммивояжера, задача коммивояжера с призами, задача маршрутизации транспорта.

УДК: 519.16 + 519.85

Поступила в редакцию: 12.05.2022
Исправленный вариант: 14.06.2022
Принята в печать: 20.06.2022

DOI: 10.21538/0134-4889-2022-28-3-241-258


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2022, 319, suppl. 1, S140–S155

Реферативные базы данных:


© МИАН, 2024