RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2022, том 28, номер 4, страницы 250–261 (Mi timm1967)

Спектр одномерных собственных колебаний двухфазных слоистых сред с периодической структурой

В. В. Шумилова

Институт проблем механики им. А. Ю. Ишлинского Российской академии наук, г. Москва

Аннотация: В работе исследуется спектр одномерных собственных колебаний вдоль оси $Ox_1$ двухфазных слоистых сред с периодической структурой, занимающих полосу $0<x_1<L$. Их периодом является полоса $0<x_1<\varepsilon$, содержащая $2M$ чередующихся слоев изотропного упругого или вязкоупругого материала (первой фазы) и вязкой несжимаемой жидкости (второй фазы). Предполагается, что число периодов $N=L/ \varepsilon$ — целое число, а слои параллельны плоскости $Ox_2 x_3$. Указанный спектр обозначается через $S_\varepsilon$ и определяется как множество собственных значений краевой задачи для однородной системы обыкновенных дифференциальных уравнений с условиями сопряжения на границах раздела твердых и жидких слоев. Эти условия непосредственно выводятся из исходного предположения о непрерывности перемещений и нормальных напряжений на границах раздела слоев. Показано, что спектр $S_\varepsilon$ состоит из корней трансцендентных уравнений, число которых равно числу периодов $N$, содержащихся внутри полосы $0<x_1<L$. За исключением одного частного случая, корни этих уравнений могут быть найдены только численно. Для многослойных сред при $N\gg 1$ в качестве начальных приближений к точкам спектра $S_\varepsilon$ предложено использовать конечные пределы последовательностей $\lambda(\varepsilon)\in S_\varepsilon$ при $\varepsilon\to 0$. Установлено, что множество всех конечных пределов совпадает с множеством корней рациональных уравнений, обозначаемым через $S$. Коэффициенты этих уравнений, а значит, и точки множества $S$ зависят от объемной доли жидкости в слоистой среде и не зависят от числа $M$ жидких слоев внутри периода. Доказано, что при любом $M\geq 1$ спектр $S_\varepsilon$ сходится по Хаусдорфу к множеству $S$ при $\varepsilon\to 0$.

Ключевые слова: спектр собственных колебаний, слоистая среда, двухфазная среда, упругий материал, вязкоупругий материал, вязкая несжимаемая жидкость.

УДК: 517.958

MSC: 35B27, 74F10, 74S25, 76M22

Поступила в редакцию: 04.08.2022
Исправленный вариант: 31.10.2022
Принята в печать: 07.11.2022

DOI: 10.21538/0134-4889-2022-28-4-250-261



Реферативные базы данных:


© МИАН, 2024