Аннотация:
Рассматривается некорректно поставленная задача определения положения линий разрыва функции двух переменных. Предполагается, что вне линий разрыва функция гладкая, а на линии имеет разрыв первого рода. В каждом узле равномерной сетки с шагом $\tau$ известны средние значения на квадрате со стороной $\tau$ от возмущенной функции. Возмущенная функция приближает точную функцию в пространстве $L_2(\mathbb{R}^2)$. Уровень возмущения $\delta$ считается известным. Ранее авторы исследовали (получили оценки точности) глобальные дискретные регуляризирующие алгоритмы аппроксимации множества линий разрыва зашумленной функции при условии, что линия разрыва точной функции удовлетворяет локальному условию Липшица. В настоящей работе введено одностороннее условие Липшица, и формулируется новый, более широкий, класс корректности. Построены новые методы локализации линий разрыва, которые работоспособны на расширенном классе функций. Доказана теорема сходимости, получены оценки точности аппроксимации и других важных характеристик алгоритмов. Показано, что новые методы гарантированно определяют положение линий разрыва в то время, когда стандартные методы не работают.
Ключевые слова:некорректная задача, метод регуляризации, линия разрыва, глобальная локализация, условие Липшица.