Аннотация:
Ранее автором были описаны с точностью до сопряжения все пары $(A,B)$ нильпотентных подгрупп в конечной группе $G$ с
цоколем $L_2(q)$, для которых $A\cap B^g\ne 1$ для любого элемента $g$ из $G$. Аналогичное описание было позднее получено
автором для примарных подгрупп $A$ и $B$ в конечной группе $G$ с цоколем $L_n(2^m)$. В данной работе дается описание с
точностью до сопряжения всех пар $(A,B)$ нильпотентных подгрупп $A$ и $B$ из конечной группы $G$
с простым цоколем из “Атласа конечных групп”, для которых $A\cap B^g\ne 1$ для любого элемента $g$ из $G$. Полученные
результаты в рассмотренных случаях подтверждают гипотезу (задача 15.40 из “Коуровской тетради”) о том, что в конечной
простой неабелевой группе $G$ для любой ее нильпотентной подгруппы $N$ найдется такой элемент $g$, что $N\cap N^g=1$.