Аннотация:
Подгруппа $H$ группы $G$ называется пронормальной, если для любого элемента $g\in G$ подгруппы $H$ и $H^g$ сопряжены в подгруппе $\langle H, H^g\rangle$. Известно, что значительная часть конечных простых групп обладает свойством $(*)$: любая подгруппа нечетного индекса пронормальна в группе. Гипотеза о том, что свойством $(*)$ обладает любая конечная простая группа, была выдвинута в 2012 г. в работе Е.П. Вдовина и третьего автора на основании анализа доказательства пронормальности всех холловых подгрупп в конечных простых группах. Однако эта гипотеза была опровергнута в 2016 г. в работе А. С. Кондратьева, второго и третьего авторов. В серии работ А. С. Кондратьева и авторов 2015–2020 гг. конечные простые группы со свойством $(*)$, за исключением простых линейных и унитарных групп с некоторыми ограничениями на естественные арифметические параметры, классифицированы. В настоящей работе строятся серии примеров непронормальных подгрупп нечетных индексов в конечных простых линейных и унитарных группах над полем нечетной характеристики и тем самым делается шаг на пути завершения классификации конечных простых групп со свойством $(*)$.