Аннотация:
Рассматриваются векторные расслоения ранга 2 с тривиальным общим слоем на проективной прямой над $\mathbb{Z}$. Для таких расслоений строится новый инвариант — кручение Рейдемейстера, аналог классического кручения Рейдемейстера из топологии. Для векторных расслоений ранга 2 с тривиальным общим слоем и подскоками высоты 1, т. е. для таких, которые в слое над $\mathbb{Q}$ изоморфны $\mathcal{O}^2$, а над каждой замкнутой точкой $Spec(\mathbb{Z})$ изоморфны $\mathcal{O}^2$ или $\mathcal{O}(-1)\oplus\mathcal{O}(1)$, вычисляется этот инвариант и показывается, что он вместе с дискриминантом расслоения полностью определяют такое расслоение.