RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2024, том 30, номер 2, страницы 203–221 (Mi timm2094)

Метод возмущений и регуляризация правила множителей Лагранжа в выпуклых задачах на условный экстремум

М. И. Сумин

Тамбовский государственный университет им. Г. Р. Державина

Аннотация: Рассматривается регуляризация правила множителей Лагранжа (ПМЛ) в недифференциальной форме в выпуклой задаче на условный экстремум с операторным ограничением-равенством в гильбертовом пространстве и конечным числом функциональных ограничений-неравенств. Целевой функционал задачи предполагается сильно выпуклым, а выпуклое замкнутое множество ее допустимых элементов также принадлежит гильбертову пространству. Ограничения задачи содержат аддитивно входящие в них параметры, что обеспечивает возможность применения для ее исследования так называемого метода возмущений. Основное предназначение регуляризованного ПМЛ — устойчивое генерирование обобщенных минимизирующих последовательностей (ОМП), аппроксимирующих посредством экстремалей регулярного функционала Лагранжа точное решение задачи. Само же регуляризованное ПМЛ можно трактовать как ОМП-образующий (регуляризирующий) оператор, который каждому набору исходных данных задачи на условный экстремум ставит в соответствие экстремаль ее отвечающего этому набору регулярного функционала Лагранжа, двойственная переменная в котором генерируется в соответствии с той или иной процедурой стабилизации двойственной задачи. Главное внимание в статье уделяется: 1) изучению связи процедуры двойственной регуляризации с субдифференциальными свойствами функции значений исходной задачи; 2) доказательству сходимости этой процедуры в случае разрешимости двойственной задачи; 3) соответствующему обновлению регуляризованного ПМЛ; 4) получению классического ПМЛ как предельного варианта его регуляризованного аналога.

Ключевые слова: выпуклая задача на условный экстремум, правило множителей Лагранжа, регуляризация, метод возмущений, функция значений, субдифференциал, двойственная задача, обобщенная минимизирующая последовательность, регуляризирующий алгоритм.

УДК: 517.9

MSC: 49K27, 49N15, 47A52, 90C46, 90C25

Поступила в редакцию: 10.02.2024
Исправленный вариант: 28.02.2024
Принята в печать: 04.03.2024

DOI: 10.21538/0134-4889-2024-30-2-203-221


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2024, 325, suppl. 1, S194–S211

Реферативные базы данных:


© МИАН, 2024