RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2003, том 9, номер 1, страницы 159–164 (Mi timm269)

On the dynamic unfolding of a saddle-center bifurcation and the change in the action

R. Habermana, D. C. Diminnieb

a Department of Mathematics, Southern Methodist University, Dallas, USA
b Texas Instruments Incorporated, Dallas, USA

Аннотация: Conservative Hamiltonian systems with slow variations are considered in the case of a dynamic saddle-center bifurcation. Using the method of averaging, action is an adiabatic invariant before and after the slow passage of the homoclinic orbit. The bifurcation is unfolded by assuming that the time that the method of averaging predicts that the homoclinic orbit is crossed is near to the time of the saddle-center bifurcation. The slow passage through homoclinic orbits associated with the unfolding of a saddle-center bifurcation is analyzed and the change in the adiabatic invariant is computed.

УДК: 519.632

Поступила в редакцию: 11.11.2002

Язык публикации: английский


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2003, suppl. 1, S91–S97

Реферативные базы данных:


© МИАН, 2024