Аннотация:
Гипотеза об отсутствии пар полупропорциональных неприводимых характеров у знакопеременных групп $A_n$ является следствием некоторой более общей гипотезы А, которая формулируется в терминах пар $\chi^\alpha$ и $\chi^\beta$ неприводимых характеров симметрической группы $S_n$, полупропорциональных на одном из множеств $A_n$ или $S_n\setminus A_n$ (здесь $\alpha$ и $\beta$ – разбиения числа $n$, соответствующие этим характерам). В статье начато рассмотрение случая, когда $h^\alpha_{11}\ne h^\beta_{11}$, т.е. (1,1)-крюки диаграмм Юнга разбиений $\alpha$ и $\beta$ имеют разные длины.
Ключевые слова:cимметрические группы, знакопеременные группы, неприводимые характеры, полупропорциональность.