RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2010, том 16, номер 5, страницы 253–260 (Mi timm628)

On the computation of the effective Hamitonian in the non convex case

M. Falconea, M. Rorrob

a SAPIENZA — Universitá di Roma
b CASPUR, Rome

Аннотация: In this paper we propose a method to compute the effective Hamiltonian, a classical problem arising e.g. in weak KAM theory and homogenization. We will focus our attention on the case of non convex Hamiltonians related to differential games where the effective Hamiltonian gives information regarding the ergodicity of the game. The method is based on solution of the Hamilton–Jacobi–Isaacs equation and gives an approximation of the effective Hamiltonian via a coupling between a dynamic programming scheme for pursuit-evasion games and the techniques adapted to solve the cell problem in the convex case. Some tests will be presented in the last section.

Ключевые слова: Hamilton–Jacobi equations, nonconvex Hamiltonian, homogenization, cell problem, numerical approximation.

УДК: 517.977+519.63

Поступила в редакцию: 07.04.2010

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024