RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2010, том 16, номер 5, страницы 308–315 (Mi timm634)

Modeling osmotic de- and rehydration of living cells using Hamilton–Jacobi eqytions and reachable set techniques

V. L. Turova

Technische Universität München, Germany

Аннотация: The paper describes mathematical models of the osmotic shrinkage and swelling of living cells during freezing and thawing. The cell shape is searched as the level set of a function which satisfies a Hamilton–Jacobi equation resulting from a Stefan-type condition for the normal velocity of the cell boundary. The Hamilton–Jacobi equation is then solved numerically in two and three dimensions using a monotony preserving finite-difference scheme. A generalized variant of the Stefan condition accounting for tension effects in the cell membrane is also considered, and the corresponding cell shape evolution is computed in two dimensions using a reachable set technique arising from conflict control approach.

Ключевые слова: сryopreservation of cells, osmotic effect, mathematical model, Hamilton–Jacobi equations, finite-difference scheme, reachable set.

УДК: 517.977+519.63

Поступила в редакцию: 12.02.2010

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024