Аннотация:
Получены близкие двусторонние оценки величины наилучшего приближения в пространстве $L_p(\mathbb R^m)$, $m=2,3$, $1\le p\le\infty$, оператора Лапласа линейными ограниченными операторами на классе функций, вторая степень оператора Лапласа которых принадлежит пространству $L_p(\mathbb R^m)$. Получены оценки наилучшей константы в соответствующем неравенстве Колмогорова и величины ошибки оптимального восстановления значений оператора Лапласа на функциях из указанного класса, заданных с ошибкой. Выписан оператор, уклонение которого от оператора Лапласа близко к наилучшему.