Аннотация:
Пусть $G$ – примитивная группа подстановок на конечном множестве $X$, $x\in X$, $y\in X\setminus\{x\}$ и $G_{x,y}\trianglelefteq G_x$. П. Камероном был поставлен вопрос о справедливости в этом случае равенства $G_{x,y}=1$. Ранее автором было доказано, что если $\mathrm{soc}(G)$ не является степенью исключительной группы лиева типа, то $G_{x,y}=1$. В настоящей работе доказывается, что если $\mathrm{soc}(G)$ является степенью исключительной группы лиева типа, отличной от $E_6(q)$, $^2E_6(q)$, $E_7(q)$ и $E_8(q)$, то $G_{x,y}=1$.
Ключевые слова:примитивная группа подстановок, регулярная подорбита.