RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2013, том 19, номер 3, страницы 199–206 (Mi timm977)

Эта публикация цитируется в 5 статьях

Порождаемость конечной группы с холловыми максимальными подгруппами парой сопряженных элементов

Н. В. Масловаab, Д. О. Ревинcd

a Институт математики и механики им. Н. Н. Красовского УрО РАН
b Уральский федеральный университет им. Б. Н. Ельцина
c Институт математики им. С. Л. Соболева СО РАН
d Новосибирский государственный университет

Аннотация: Для конечной группы $G$ через $\pi(G)$ обозначается множество простых делителей числа $|G|$. В “Коуровской тетради” П. Шумяцким под номером 17.125 записана гипотеза: в конечной группе $G$ всегда найдется пара сопряженных элементов $a$ и $b$ таких, что $\pi(G)=\pi(\langle a,b\rangle)$. Обозначим через $\mathfrak Y$ класс всех конечных групп $G$ таких, что $\pi(H)\ne\pi(G)$ для любой максимальной подгруппы $H$ в $G$. Гипотеза Шумяцкого эквивалентна следующей гипотезе: любая группа из класса $\mathfrak Y$ порождается двумя сопряженными элементами. Пусть $\mathfrak V$ класс всех конечных групп, в которых каждая максимальная подгруппа является холловой. Ясно, что $\mathfrak V\subseteq\mathfrak Y$. В настоящей работе доказано, что любая группа из класса $\mathfrak V$ порождается двумя сопряженными элементами. Таким образом, получено частичное подтверждение гипотезы Шумяцкого. Кроме того, изучены некоторые свойства контрпримера наименьшего порядка к гипотезе Шумяцкого.

Ключевые слова: конечная группа, порождаемость парой сопряженных элементов, холлова подгруппа, максимальная подгруппа, простой спектр.

УДК: 512.542

Поступила в редакцию: 12.09.2012


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, 285, suppl. 1, S139–S145

Реферативные базы данных:


© МИАН, 2024