Аннотация:
Пусть $G_\pi$ – $\pi$-холлова подгруппа конечной $\pi$-разрешимой группы $G$ и $M$ – максимальная подгруппа из $G_\pi$. Находятся оценки производной $\pi$-длины $l^a_\pi(G)$ группы $G$ в зависимости от строения подгруппы $G_\pi$ или $M$. Рассматривается ситуация, когда в этих подгруппах все собственные подгруппы абелевы или нильпотентны. В частности, доказывается, что $l_\pi^a(G)\le5$ для $\pi$-разрешимой группы $G$, у которой подгруппа $M$ является минимальной ненильпотентной группой.