Эта публикация цитируется в
2 статьях
Общий подход к решению задач на графах коллективом автоматов
И. Б. Бурдонов,
А. С. Косачев Институт системного программирования РАН
Аннотация:
Предложен общий подход к решению задач на неориентированном упорядоченном корневом связном графе коллективом автоматов, расположенных в вершинах графа и обменивающихся сообщениями по рёбрам графа. Автоматы считаются полуроботами, т.е. размер их памяти может расти вместе с ростом числа
$n$ вершин и числа
$m$ рёбер графа, но описание графа может не помещаться в памяти автомата. В разделе 2 классифицируются модели коллектива автоматов на графе в зависимости от размера памяти автомата, времени срабатывания автомата и ёмкости ребра (числа сообщений, одновременно перемещающихся по ребру). Выбрана модель максимального распараллеливания, в которой время срабатывания автомата считается нулевым, а ёмкость ребра неограниченной. Это позволяет получать нижние оценки сложности алгоритмов решения задач. Раздел 3 определяет правила оценки алгоритмов. В разделе 4 описаны базовые процедуры обработки сообщений и проводится классификация используемых сообщений в зависимости от маршрутов, проходимых сообщениями, и способа размножения или слияния сообщений. На основе этих процедур предлагается строить алгоритмы решения задач на графах, что демонстрируется в следующих разделах статьи. В разделах 5-9 предложены алгоритм построения остова графа, алгоритм универсального «стопора», определяющего конец работы любого алгоритма по отсутствию в графе сообщений, используемых этим алгоритмом, алгоритм построения дерева кратчайших путей, алгоритм нумерации вершин графа, и алгоритм сбора полуроботами информации о графе в неограниченной памяти автомата корня. Предложенные алгоритмы имеют линейную сложность от
$n$ и
$m$, и используют число сообщений, линейно зависящее от
$n$ и
$m$. В разделе 10 рассматривается задача поиска максимального пути в нумерованном графе, которая относится к классу NP. За счёт неограниченного (экспоненциального) числа сообщений алгоритм решения этой задачи имеет линейную сложность. В заключении подводятся итоги и намечаются направления дальнейших исследований: решение других задач на графах и расширение подхода на ориентированные графы, а также недетерминированные и динамические графы.
Ключевые слова:
неориентированные графы, задачи на графах, асинхронные распределённые системы, распределенные алгоритмы.
DOI:
10.15514/ISPRAS-2017-29(2)-2