RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды института системного программирования РАН // Архив

Труды ИСП РАН, 2017, том 29, выпуск 4, страницы 55–72 (Mi tisp235)

Эта публикация цитируется в 3 статьях

Fast $L^1$ Gauss transforms for edge-aware image filtering

[Быстрое $L^1$-преобразование Гаусса для сглаживания изображений с сохранением границ]

Dina Bashkirovaab, Shin Yoshizawaa, Roustam Latypovb, Hideo Yokotaa

a RIKEN
b Kazan Federal University

Аннотация: Преобразование Гаусса, также как и его дискретный аналог, является важнейшим инструментом во множестве математических дисциплин и находит свое применение во многих научных и инженерных областях, таких как математическая статистика и теория вероятностей, физика, математическое моделирование, машинное обучение и обработка изображений и прочие. Ввиду высокой вычислительной сложности преобразования Гаусса (квадратичная сложность относительно количества точек и экспоненциальная — относительно размерности точек), необходимы эффективные и быстрые методы его аппроксимации, обладающие большей точностью по сравнению с существующими ныне методами, такими как Быстрое Преобразование Фурье или оконное преобразование. В данной статье предложен новый метод аппроксимации преобразования Гаусса для равномерно распределенный множеств точек (например, двумерных изображений), основанный на использовании $L^2$ метрики и метода разделения доменов. Такой подход позволяет значительно сократить количество вычислительных операций путем выполнения предварительных вычислений, и снизить вычислительную сложность метода до линейной. Результаты ряда численных экспериментов показали, что разработанный алгоритм позволяет получить более высокую точность аппроксимации без потери скорости вычисления в сравнении со стандартными методами. Также в качестве примера применения предлагаемого алгоритма была разработана новая схема смежной фильтрации изображения. Было показано, что новый фильтр на основе быстрого $L^1$ преобразования Гаусса позволяет получить результат более высокого качества при сопоставимой скорости вычисления и при этом избежать появления нежелательных артефактов в результате обработки, таких как эффект ореола.

Ключевые слова: фильтр Гаусса, распреледение Лапласа, быстрый метод аппроксимации.

Язык публикации: английский

DOI: 10.15514/ISPRAS-2017-29(4)-4



Реферативные базы данных:


© МИАН, 2024