RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды института системного программирования РАН // Архив

Труды ИСП РАН, 2018, том 30, выпуск 2, страницы 301–316 (Mi tisp320)

Эта публикация цитируется в 1 статье

Применение параллельных алгоритмов при численном моделировании кровотока в квазиодномерном приближении

А. Н. Авдеева, В. В. Пузикова

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Аннотация: Главной целью современного гемодинамического моделирования является предсказание поведения давления крови в артериях, а также изучение комплексного воздействия разнообразных факторов на характеристики сердечно-сосудистой системы. Наиболее популярными при этом являются квазиодномерные модели течения крови по сосудам, позволяющие моделировать кровоток во всей сосудистой системе. Поскольку полномасштабное моделирование сердечно-сосудистой системы требует больших вычислительных затрат, актуальной является задача распараллеливания вычислений. В данной работе проведено исследование эффективности распараллеливания вычислений при численном моделировании кровотока в квазиодномерном приближении. Для простоты рассмотрена задача о моделировании течения крови в отдельном кровеносном сосуде. При построении параллельного алгоритма был применен метод декомпозиции области. В каждой подобласти задача на каждом шаге по времени расщепляется на гиперболическую и параболическую подзадачи. Для решения гиперболической подзадачи используется интегро-интерполяционный метод, основанный на схеме MUSCL. Для интегрирования по времени применяются методы Рунге-Кутты и Адамса-Башфорта второго порядка. Для решения параболической подзадачи используется метод Кранка-Николсона. На стыках подобластей интерфейсные условия образуют нелинейные системы с тремя неизвестными. Эти системы решаются при помощи метода Ньютона. С помощью профилировщика AMD CodeAnalyst была определена структура временных затрат при решении тестовой задачи в последовательном режиме. При помощи закона Амдала получены оценки максимально возможного ускорения при распараллеливании наиболее дорогостоящих с вычислительной точки зрения операций. При реализации полученного алгоритма в разработанном авторами настоящей работы программном комплексе использовались технология OpenMP и библиотека MPI. Расчеты проводились на учебно-вычислительном кластере кафедры ФН-2 «Прикладная математика» МГТУ им. Н.Э. Баумана. Результаты вычислительных экспериментов показали, что выигрыш по времени, достигаемый за счет использования библиотеки MPI, не превышает нескольких процентов по сравнению с применением технологии OpenMP. В связи с этим, принимая во внимания простоту распараллеливания алгоритмов посредством OpenMP, можно остановить выбор на данной технологии, однако использование MPI позволяет сделать программный комплекс универсальным -работающим как на системах с общей памятью, так и на системах с распределенной памятью.

Ключевые слова: технология OpenMP, MPI, квазиодномерная модель, кровоток, метод декомпозиции области, параллельный алгоритм, кластер, метод MUSCL, расщепление Годунова.

DOI: 10.15514/ISPRAS-2018-30(2)-15



Реферативные базы данных:


© МИАН, 2024