Аннотация:
В работе рассмотрен подход к сравнению систем обнаружения вторжений (СОВ) на основе нескольких независимых сценариев и комплексного тестирования, который позволил выявить основные достоинства и недостатки СОВ, основанной на применении методов машинного обучения (ML СОВ); определить условия, при которых ML СОВ способна превосходить сигнатурные системы по качеству обнаружения; оценить практическую применимость ML СОВ. Разработанные сценарии позволили смоделировать реализацию как известных атак, так и эксплуатацию уязвимости «нулевого дня». Сделан вывод о преимуществе ML СОВ при обнаружении ранее неизвестных атак, а также о целесообразности построения гибридных систем обнаружения, сочетающих возможности сигнатурного и эвристических методов анализа.
Ключевые слова:информационная безопасность, система обнаружения вторжений, машинное обучение, сигнатурные средства выявления атак, методика сравнения, сетевой трафик, компьютерная атака