RUS  ENG
Полная версия
ЖУРНАЛЫ // Institute of Electrical and Electronics Engineers. Transactions on Information Theory // Архив

IEEE Trans. Information Theory, 2014, том 60, выпуск 7, страницы 3989–4000 (Mi tit1)

Эта публикация цитируется в 16 статьях

Sparse approximation and recovery by greedy algorithms

E. D. Livshitsab, V. N. Temlyakovcd

a Lomonosov Moscow State University
b Evernote Corp, Moscow 121087, Russia
c Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
d University of South Carolina

Аннотация: We study sparse approximation by greedy algorithms. Our contribution is twofold. First, we prove exact recovery with high probability of random $K$-sparse signals within $[K(1+ \epsilon)]$ iterations of the orthogonal matching pursuit (OMP). This result shows that in a probabilistic sense, the OMP is almost optimal for exact recovery. Second, we prove the Lebesgue-type inequalities for the weak Chebyshev greedy algorithm, a generalization of the weak orthogonal matching pursuit to the case of a Banach space. The main novelty of these results is a Banach space setting instead of a Hilbert space setting. However, even in the case of a Hilbert space, our results add some new elements to known results on the Lebesgue-type inequalities for the restricted isometry property dictionaries. Our technique is a development of the recent technique created by Zhang.

Язык публикации: английский

DOI: 10.1109/TIT.2014.2320932



Реферативные базы данных:


© МИАН, 2024