Аннотация:
The main point of this paper is to suggest that plane curves with cusps, nodes, and tacnodes only could still have complicated fundamental groups of their complements. After describing such a curve, we compare our results with the results of Allcock, Carlson, and Toledo from the perspective of homological mirror symmetry. We connect some classical ideas of Zariski with some modern ideas emphasizing unity of mathematics—a leading line in Tyurin's work.