Shilov Boundary and Topological Divisors of Zero
A. Escassut Laboratoire de Mathematiques Pures, University Blaise Pascal (Clermont-Ferrand)
Аннотация:
Let
$E$ be a field complete with respect to a nontrivial Archimedean or non-Archimedean ultrametric absolute value and let
$(A,\|\cdot \|)$ be a commutative normed
$E$-algebra with unity whose spectral seminorm is
$\|\cdot \|_{\mathrm {si}}$. Let
$\operatorname {Mult}(A,\|\cdot \|)$ be the set of continuous multiplicative seminorms of
$A$ and let
$\mathcal S$ be the Shilov boundary for
$(A,\|\cdot \|_{\mathrm {si}})$. An element
$\psi$ of $\operatorname {Mult}(A,\|\cdot \|_{\mathrm {si}})$ belongs to
$\mathcal S$ if and only if, for every neighborhood
$\mathcal U$ of
$\psi$ in
$\operatorname {Mult}(A,\|\cdot \|)$, there exist
$\theta\in{\mathcal U}$ and
$g\in A$ that satisfy
$\|g\|_{\mathrm {si}}=\theta (g)$ and
$\gamma (g)<\|g\|_{\mathrm {si}}$ for all
$\gamma \in {\mathcal S}\setminus U$. Suppose that
$A$ is uniform and
$f\in A$. Then,
$f$ is a topological divisor of zero if and only if there exists
$\psi\in\mathcal S$ such that
$\psi(f)=0$. Moreover, if
$f$ is not a divisor of zero, then it is a topological divisor of zero if and only if the ideal
$fA$ is not closed in
$A$. Suppose that
$A$ is ultrametric, complete, and Noetherian. All topological divisors of zero are divisors of zero. This applies to affinoid algebras. Let
$A$ be a Krasner algebra
$H(D)$ without nontrivial idempotents: an element
$f\in H(D)$ is a topological divisor of zero if and only if
$fH(D)$ is a closed ideal; moreover,
$H(D)$ is a principal ideal ring if and only if it has no topological divisors of zero but
$0$ (this new condition adds to the well-known set of equivalent conditions found in 1969).
УДК:
517.94
Поступило в октябре 2003 г.
Язык публикации: английский