RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Тр. МИАН СССР, 1990, том 188, страницы 59–87 (Mi tm1793)

Эта публикация цитируется в 6 статьях

О динамических системах, порождаемых начально-краевыми задачами для уравнений движения линейных вязкоупругих жидкостей

Н. А. Каразеева, А. А. Котсиолис, А. П. Осколков


Аннотация: Работа посвящена построению и исследованию свойств динамических систем, порождаемых начально-краевыми задачами для уравнений движения двух основных классов линейных вязкоупругих жидкостей – жидкостей Олдройта порядка $L=1,2,\dots$ и жидкостей Кельвина–Фойгта порядка $L=0,1,2,\dots$ . Доказана однозначная глобальная разрешимость этих задач на бесконечном интервале времени и доказано, что разрешающий оператор $V_t$ задачи для уравнений движения жидкостей Олдройта является компактным при $t>0$, а разрешающий оператор задачи для уравнений движения жидкостей Кельвина–Фойгта $V_t=W_t+U_t$, где $W_t$ – линейная экспоненциально-сжимаемая полугруппа, a $U_t$ – нелинейный компактный оператор при $t>0$. Для обеих задач построены глобальный минимальный $B$-аттрактор $\mathfrak{M}$ (в смысле Ладыженской) и порождаемая задачей динамическая система ($\mathfrak{M}$: $V_t$, $-\infty<t<\infty$), доказана конечномерность динамики $V_t$ на $\mathfrak{M}$, конечность хаусдорфовой $d_{H}(\mathfrak{M})$ и фрактальной $d_{f}(\mathfrak{M})$ размерностей аттрактора $\mathfrak{M}$ и даны асимптотические оценки числовых характеристик $\mathfrak{M}$ – $d_{H}(\mathfrak{M})$, $d_{f}(\mathfrak{M})$ и числа определяющих мод $N(\mathfrak{M})$ (характеристики конечномерности динамики $V_t$ на $\mathfrak{M}$). Библиогр. – 28 назв.

УДК: 517.94


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 1991, 188, 73–108

Реферативные базы данных:


© МИАН, 2024