Аннотация:
Классические результаты Г. Дарбу о преобразованиях гиперболических уравнений второго порядка на плоскости с помощью дифференциальных подстановок обобщаются на случай параболических уравнений вида $Lu=(D^2_x+a(x,y)D_x+b(x,y)D_y+c(x,y))u=0$. Доказана общая теорема о структуре допустимых дифференциальных подстановок для указанного класса уравнений. Показано, что любое преобразование порядка, большего единицы, разлагается в композицию преобразований первого порядка. Наличие обратного преобразования влечет определенные нелинейные дифференциальные ограничения на коэффициенты начального оператора. В одном из частных случаев при этом получается известное интегрируемое уравнение – уравнение Буссинеска.