Аннотация:
Пусть функция $f(\mu)$ задана на сфере $\boldsymbol\sigma$, ${}^*\Delta^k_{\boldsymbol\gamma} f(\mu)$ – ее разность порядка $k$ с шагом $\gamma$ вдоль геодезической, исходящей из $\mu\in\boldsymbol\sigma$, усредненная по таким геодезическим. Положим при $k>r$ $$
B^r_{p,\theta}=\biggl\{f;f\in L_p(\sigma),\biggl\{\int_0^\pi(\sup_{0<\gamma\le\sigma}\|{}^*\Delta^k_\gamma f
(\cdot)\|_{L_p(\sigma)})^\theta\frac{d\delta}{\delta^{1+r\theta}}\biggr\}^{1/\theta}<\infty\biggr\}.
$$
В статье доказываются прямая и обратная теоремы о приближении функции $f\in B^r_{p,\theta}$ полиномами по сферическим гармоникам (в терминах сходимости некоторого ряда из наилучших приближений). Библиогр. – 7 назв.