RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Тр. МИАН СССР, 1988, том 181, страницы 213–221 (Mi tm1943)

Эта публикация цитируется в 3 статьях

Новый подход к теории функциональных пространств $B^r_{p,\theta}$ на сфере

С. М. Никольский, П. И. Лизоркин


Аннотация: Пусть функция $f(\mu)$ задана на сфере $\boldsymbol\sigma$, ${}^*\Delta^k_{\boldsymbol\gamma} f(\mu)$ – ее разность порядка $k$ с шагом $\gamma$ вдоль геодезической, исходящей из $\mu\in\boldsymbol\sigma$, усредненная по таким геодезическим. Положим при $k>r$
$$ B^r_{p,\theta}=\biggl\{f;f\in L_p(\sigma),\biggl\{\int_0^\pi(\sup_{0<\gamma\le\sigma}\|{}^*\Delta^k_\gamma f (\cdot)\|_{L_p(\sigma)})^\theta\frac{d\delta}{\delta^{1+r\theta}}\biggr\}^{1/\theta}<\infty\biggr\}. $$
В статье доказываются прямая и обратная теоремы о приближении функции $f\in B^r_{p,\theta}$ полиномами по сферическим гармоникам (в терминах сходимости некоторого ряда из наилучших приближений). Библиогр. – 7 назв.

УДК: 517.518


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 1989, 181, 233–242

Реферативные базы данных:


© МИАН, 2024