RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Тр. МИАН СССР, 1981, том 155, страницы 151–181 (Mi tm2425)

Эта публикация цитируется в 4 статьях

Теорема Меньшова об исправлении и гауссовские процессы

С. В. Хрущев


Аннотация: В первой части статьи излагается простое доказательство известной теоремы Д. Е. Меньшова: для любой непрерывной на единичной окружности $\mathbb T$ функции $f$ и любого положительного числа $\sigma$ существует функция $f^{*}$ с равномерно сходящимся рядом Фурье, такая, что $\operatorname{mes}\{\xi\in\mathbb T:f\neq f^{*}\}<\sigma$. Показано, что это доказательство можно провести и в случае компактных коммутативных групп конечной размерности с эргодическим эпиморфизмом. Примерами таких групп служат многомерные торы $\mathbb T^n$, $n=1,2,\dots$, и диадическая группа $\{-1,1\}^{\mathbb N}$. В заключительной части работы рассматривается проблема исправления траекторий стационарных гауссовских процессов на окружности $\mathbb T$. Пусть
$$ \mathfrak{F}l^1\overset{\text{def}}= \biggl\{f\in C(\mathbb T):\sum_{n\in\mathbb Z}|\widehat{f}(n)|<+\infty\biggr\}, $$
и пусть $(X_n)_{n\ge1}$ – последовательность независимых комплексных гауссовских случайных величин с нулевыми средними и единичными дисперсиями. Непрерывная функция $f$, $f\in C(\mathbb T)$, называется неисправимой, если для любого множества $E$, $E\subset\mathbb T$, положительной Лебеговой меры $\operatorname{mes}E>0$ на окружности $\mathbb T$ имеет место соотношение $f|E\not\in\mathfrak{F}l^1|E$.
В работе показано, что свойство функции быть неисправимой типично для функций из множества $C(\mathbb T)\setminus\mathfrak{F}l^1$. В частности, показано, что почти все траектории процесса $X(\zeta)=\sum\limits_{n\geq2}\dfrac{\log\log n}n\zeta^nX_n$ неисправимы. Для коэффициентов Фурье $\widehat{f}(n)$ почти всех этих траектории справедливо равенство $\widehat{f}(n)=O\Bigl(\dfrac{\sqrt{\log n}\log\log n}n\Bigr)$. В доказательстве используются недавние результаты И. Катцнельсона и А. М. Олевского. Лит. – 28 назв.

УДК: 517.948:513.8+519.4


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 1983, 155, 147–175

Реферативные базы данных:


© МИАН, 2024