RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Тр. МИАН СССР, 1980, том 145, страницы 20–62 (Mi tm2532)

Эта публикация цитируется в 12 статьях

Приближение функций в равномерной метрике суммами Фурье по ортогональным полиномам

В. М. Бадков


Аннотация: Исследуется вопрос о приближении в равномерной метрике непрерывных функций частными суммами их рядов Фурье по системе $\sigma^T(\varphi)$ тригонометрических полиномов, ортонормальной на $[-\pi,\pi]$ с 2 $\pi$-периодическим весом $\varphi$, и по системе $\sigma(p)$ алгебраических многочленов, ортонормальной на [-1, 1] с весом $p$. Предполагается, что функции $\varphi(\tau)$ и $p(t)\sqrt{1-t^2}$ непрерывны, обладают достаточной гладкостью на отрезках ортогональности и всюду положительны на этих отрезках, за исключением конечного числа точек, в которых эти функции стремятся к нулю со степенной скоростью.
Устанавливаются теоремы равносходимости рядов Фурье по системе $\sigma^T(\varphi)$ с обычными рядами Фурье и рядов Фурье по системе $\sigma(p)$ с рядами Фурье по многочленам Чебышева 1-го рода. С помощью теорем равносходимости выводятся асимптотические формулы для функций Лебега и верхних граней уклонений сумм Фурье по различным классам непрерывных и дифференцируемых функций. Находятся порядки приближений указанных классов функций суммами Фурье по рассматриваемым системам. В качестве вспомогательных результатов найдена связь тригонометрических ортогональных полиномов с многочленами, ортогональными на окружности, и получены оценки ортогональных полиномов.
Библиогр. – 71 назв.

УДК: 517.518.8


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 1981, 145, 19–65

Реферативные базы данных:


© МИАН, 2024