Аннотация:
Обозначим через $C_A$ множество функций, аналитических в круге $|z|<1$ и непрерывных в его замыкании $|z|\le 1$; $\mathcal {R}_n$, $n=0,1,2,\dots $, — множество рациональных функций степени не выше $n$. Через $R_n(f)$ ($R_n(f)_A$) обозначим наилучшее равномерное приближение функции $f\in C_A$ на окружности $|z|=1$ (в круге $|z|\le 1$) посредством множества $\mathcal {R}_n$. В работе для любого $n\ge 1$ получено равенство $\sup \{R_n(f)_A/R_n(f)\colon f\in C_A \setminus \mathcal {R}_n\}=2$. Рассматривается аналогичная задача о сравнении наилучших полиномиальных и тригонометрических полиномиальных приближений функций из $C_A$.