RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Тр. МИАН СССР, 1967, том 93, страницы 164–186 (Mi tm2832)

Эта публикация цитируется в 1 статье

Конструктивный математический анализ

О некоторых типах непрерывности конструктивных операторов

В. П. Оревков


Аннотация: Приводится определение понятия $L$-npaвильного конструктивного метрического пространства. Это понятие шире, чем понятие полного метрического пространства. Конструктивный оператор $f$ из одного конструктивного метрического пространства в другое называется $n$-непрерывным в точке $X$, если $f$ определен в $X$ и перерабатывает конструктивные последовательности точек, сходящиеся к $X$, в последовательности точек, сходящиеся к $f(X)$. Доказывается, что любой конструктивный оператор из $L$-правильного конструктивного метрического пространства в произвольное конструктивное метрическое пространство $n$-непрерывен в каждой точке своей определенности. Доказывается, что для $n$-непрерывности везде определенного линейного оператора из нормированного пространства $\mathfrak M$ с умножением на дуплексы в нормированное пространство $\mathfrak N$ с умножением на дуплексы необходимо и достаточно, чтобы был ограничен образ любого перечислимого множества точек из $\mathfrak M$, норма которых равна 1. Приводится пример линейного везде определенного функционала, заданного на полном нормированном пространстве с умножением на дуплексы, $n$-непрерывного, но не непрерывного.
Библ. – 16 назв.

УДК: 517+518.5+164


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 1970, 93, 211–239

Реферативные базы данных:


© МИАН, 2024