RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2010, том 268, страницы 252–257 (Mi tm2875)

Эта публикация цитируется в 11 статьях

Cohomological non-rigidity of generalized real Bott manifolds of height 2

M. Masuda

Department of Mathematics, Osaka City University, Osaka, Japan

Аннотация: We investigate the following problem: When do two generalized real Bott manifolds of height 2 have isomorphic cohomology rings with $\mathbb Z/2$ coefficients and also when are they diffeomorphic? It turns out that in general cohomology rings with $\mathbb Z/2$ coefficients do not distinguish those manifolds up to diffeomorphism. This gives a negative answer to the cohomological rigidity problem for real toric manifolds posed earlier by Y. Kamishima and the present author. We also prove that generalized real Bott manifolds of height 2 are diffeomorphic if they are homotopy equivalent.

УДК: 515.14+515.16

Поступило в январе 2009 г.

Язык публикации: английский


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2010, 268, 242–247

Реферативные базы данных:


© МИАН, 2024