RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2010, том 268, страницы 64–75 (Mi tm2876)

Эта публикация цитируется в 9 статьях

The Pontryagin maximum principle and a unified theory of dynamic optimization

F. Clarke

CNRS, UMR 5208, Institut Camille Jordan, Université Claude Bernard Lyon 1, Villeurbanne, France

Аннотация: The Pontryagin maximum principle is the central result of optimal control theory. In the half-century since its appearance, the underlying theorem has been generalized, strengthened, extended, proved and reinterpreted in a variety of ways. We review in this article one of the principal approaches to obtaining the maximum principle in a powerful and unified context, focusing upon recent results that represent the culmination of over thirty years of progress using the methodology of nonsmooth analysis. We illustrate the novel features of this theory, as well as its versatility, by introducing a far-reaching new theorem that bears upon the currently active subject of mixed constraints in optimal control.

УДК: 517.977

Поступило в апреле 2009 г.

Язык публикации: английский


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2010, 268, 58–69

Реферативные базы данных:


© МИАН, 2024