Аннотация:
Получены характеризации (с соответствующими эквивалентными нормировками) функциональных пространств типа Никольского–Бесова $\mathbf B^{sm}_{pq}(\mathbb I^k)$ и Лизоркина–Трибеля $\mathbf L^{sm}_{pq}(\mathbb I^k)$ в терминах представлений функций из этих пространств рядами Фурье относительно кратной системы $\mathcal W^\mathbb I_m$ всплесков Мейера и в терминах последовательностей коэффициентов Фурье по этой системе. Установлены точные в смысле порядка оценки приближения функций из классов $B^{sm}_{pq}(\mathbb I^k)$ и $L^{sm}_{pq}(\mathbb I^k)$ специальными частичными суммами этих рядов в метрике $L_r(\mathbb I^k)$ для ряда соотношений между параметрами $s,p,q,r,m$ ($s=(s_1,\dots,s_n)\in\mathbb R^n_+$, $1\leq p,q,r\leq\infty$, $m=(m_1,\dots,m_n)\in\mathbb N^n$, $k=m_1+\dots+m_n$, $\mathbb I=\mathbb R$ или $\mathbb T$). В периодическом случае изучены поперечники Фурье этих классов функций.