Аннотация:
В работе выделяются новые классы неравномерно эллиптических недивергентных квазилинейных
уравнений, для решений которых возможно установить нелокальную априорную
оценку максимума модуля градиента при условии, что известен максимум модуля градиента
решения на границе области. Коэффициенты $a_{ij}(x,u,u_x)$ рассматриваемых уравнений удовлетворяют
так называемому обобщенному условию однородности; условия на свободные
члены, которые могут быть и недифференцируемыми, и производные коэффициентов $a_{ij}(x,u,u_x)$ формулируется в терминах функции $E(x,u,u_x)\equiv a_{ij}u_{x_i}u_{x_j}$ Библ. – 13 назв.