RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2011, том 272, страницы 117–128 (Mi tm3253)

Эта публикация цитируется в 5 статьях

Affine generalizations of gravity in the light of modern cosmology

A. T. Filippov

Joint Institute for Nuclear Research, Dubna, Moscow region, Russia

Аннотация: We discuss new models of an “affine” theory of gravity in multidimensional space-times with symmetric connections. We use and develop ideas of Weyl, Eddington, and Einstein, in particular, Einstein's proposal to specify the space-time geometry by the use of the Hamilton principle. More specifically, the connection coefficients are determined using a “geometric” Lagrangian that is an arbitrary function of the generalized (nonsymmetric) Ricci curvature tensor (and, possibly, of other fundamental tensors) expressed in terms of the connection coefficients regarded as independent variables. Such a theory supplements the standard Einstein gravity with dark energy (the cosmological constant, in the first approximation), a neutral massive (or tachyonic) vector field (vecton), and massive (or tachyonic) scalar fields. These fields couple only to gravity and can generate dark matter and/or inflation. The new field masses (real or imaginary) have a geometric origin and must appear in any concrete model. The concrete choice of the geometric Lagrangian determines further details of the theory, for example, the nature of the vector and scalar fields that can describe massive particles, tachyons, or even “phantoms.” In “natural” geometric theories, which are discussed here, dark energy must also arise. We mainly focus on intricate relations between geometry and dynamics while only very briefly considering approximate cosmological models inspired by the geometric approach.

Поступило в июле 2010 г.

Язык публикации: английский


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2011, 272, 107–118

Реферативные базы данных:


© МИАН, 2024