RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2011, том 273, страницы 192–206 (Mi tm3284)

Эта публикация цитируется в 11 статьях

Filling minimality of Finslerian 2-discs

S. V. Ivanov

St. Petersburg Department of the Steklov Mathematical Institute, Russian Academy of Sciences, St. Petersburg, Russia

Аннотация: We prove that every Riemannian metric on the 2-disc such that all its geodesics are minimal is a minimal filling of its boundary (within the class of fillings homeomorphic to the disc). This improves an earlier result of the author by removing the assumption that the boundary is convex. More generally, we prove this result for Finsler metrics with area defined as the two-dimensional Holmes–Thompson volume. This implies a generalization of Pu's isosystolic inequality to Finsler metrics, both for the Holmes–Thompson and Busemann definitions of the Finsler area.

УДК: 514.76

Поступило в ноябре 2009 г.

Язык публикации: английский


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2011, 273, 176–190

Реферативные базы данных:


© МИАН, 2024