RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2011, том 275, страницы 181–187 (Mi tm3338)

Эта публикация цитируется в 1 статье

The illumination conjecture for spindle convex bodies

Károly Bezdekabc

a Department of Mathematics, University of Pannonia, Veszprém, Hungary
b Institute of Mathematics, Eötvös Loránd University, Budapest, Hungary
c Department of Mathematics and Statistics, University of Calgary, Canada

Аннотация: A subset of the $d$-dimensional Euclidean space having nonempty interior is called a spindle convex body if it is the intersection of (finitely or infinitely many) congruent $d$-dimensional closed balls. A spindle convex body is called a “fat” one if it contains the centers of its generating balls. The main result of this paper is a proof of the illumination conjecture for “fat” spindle convex bodies in dimensions greater than or equal to 15.

УДК: 514.17

Поступило в апреле 2011 г.

Язык публикации: английский


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2011, 275, 169–176

Реферативные базы данных:


© МИАН, 2024