RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2011, том 275, страницы 262–294 (Mi tm3343)

Эта публикация цитируется в 4 статьях

Equivariant cohomology distinguishes the geometric structures of toric hyperkähler manifolds

Shintarô Kuroki

Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

Аннотация: Toric hyperkähler manifolds are the hyperkähler analogue of symplectic toric manifolds. The theory of Bielawski and Dancer tells us that, while a symplectic toric manifold is determined by a Delzant polytope, a toric hyperkähler manifold is determined by a smooth hyperplane arrangement. The purpose of this paper is to show that a toric hyperkähler manifold up to weak hyperhamiltonian $T$-isometry is determined not only by a smooth hyperplane arrangement up to weak linear equivalence but also by its equivariant cohomology $H_T^*(M;\mathbb Z)$ with a point $\hat a$ in $H^2(M;\mathbb R)\setminus\{0\}$ up to weak $H^*(BT;\mathbb Z)$-algebra isomorphism preserving $\hat a$.

УДК: 515.16

Поступило в мае 2011 г.

Язык публикации: английский


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2011, 275, 251–283

Реферативные базы данных:


© МИАН, 2024