Аннотация:
Euler's classical problem on stationary configurations of an elastic rod in a plane is studied as an optimal control problem on the group of motions of a plane. We show complete integrability of the Hamiltonian system of the Pontryagin maximum principle. We prove that a closed elastica is either a circle or a figure-of-eight elastica, wrapped around itself several times. Finally, we study local and global optimality of closed elasticae: the figure-of-eight elastica is optimal only locally, while the circle is optimal globally.