RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2013, том 280, страницы 53–66 (Mi tm3447)

Эта публикация цитируется в 68 статьях

On the Schrödinger maximal function in higher dimension

J. Bourgain

Institute for Advanced Study, Princeton, NJ, USA

Аннотация: New estimates on the maximal function associated to the linear Schrödinger equation are established. It is shown that the almost everywhere convergence property of $e^{it\Delta}f$ for $t\to0$ holds for $f\in H^s(\mathbb R^n)$, $s>\frac12-\frac1{4n}$, which is a new result for $n\geq3$. We also construct examples showing that $s\geq\frac12-\frac1n$ is certainly necessary when $n\geq4$. This is a further contribution to our understanding of how L. Carleson's result for $n=1$ generalizes in higher dimension. From the methodological point of view, crucial use is made of J. Bourgain and L. Guth's results and techniques that are based on the multi-linear oscillatory integral theory developed by J. Bennett, T. Carbery and T. Tao.

УДК: 517.95+517.44

Поступило в январе 2012 г.

Язык публикации: английский

DOI: 10.1134/S0371968513010044


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2013, 280, 46–60

Реферативные базы данных:


© МИАН, 2024