RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2013, том 282, страницы 114–131 (Mi tm3478)

Эта публикация цитируется в 1 статье

Random walk in mixed random environment without uniform ellipticity

Ostap Hryniv, Mikhail V. Menshikov, Andrew R. Wade

Department of Mathematical Sciences, Durham University, Durham, UK

Аннотация: We study a random walk in random environment on $\mathbb Z_+$. The random environment is not homogeneous in law, but is a mixture of two kinds of site, one in asymptotically vanishing proportion. The two kinds of site are (i) points endowed with probabilities drawn from a symmetric distribution with heavy tails at 0 and 1, and (ii) “fast points” with a fixed systematic drift. Without these fast points, the model is related to the diffusion in heavy-tailed (“stable”) random potential studied by Schumacher and Singh; the fast points perturb that model. The two components compete to determine the behaviour of the random walk; we identify phase transitions in terms of the model parameters. We give conditions for recurrence and transience and prove almost sure bounds for the trajectories of the walk.

УДК: 519.217.31

Поступило в феврале 2013 г.

Язык публикации: английский

DOI: 10.1134/S0371968513030102


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2013, 282, 106–123

Реферативные базы данных:


© МИАН, 2024